专利详情:
本发明提供了一种基于哈希学习的轻量级社会化推荐方法。该方法包括:构建用户‑物品评分矩阵和用户‑用户社交网络,通过对用户‑用户社交网络施加截断式随机游走和负采样,生成社交语料;根据用户‑物品评分矩阵和社交语料训练离散矩阵分解与连续网络嵌入混合模型,得到二值化的用户特征矩阵和物品特征矩阵;根据用户特征矩阵和物品特征矩阵预估用户对未评分物品的偏好分值,并将预估分值最高的一个或者多个未评分物品推荐给用户。本发明所述方法与当下主流的实值化推荐方法性能相当,但由于采用了轻量级模型设计思想,所获二值化用户和物品特征具有更低的计算和存储开销。